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Abstract
In Partial Multi-Label Learning (PML), each in-
stance is associated with a candidate label set con-
taining multiple relevant labels along with other
false positive labels. Currently, most PML methods
directly extract instance correlation from instance
features while ignoring the candidate labels, which
may contain more discriminative instance-related
information. This paper argues that, with a well-
designed model, more accurate instance correlation
can be mined from the candidate labels to facili-
tate label disambiguation. To this end, we propose
a novel PML method based on pseudo-label re-
construction (PML-PLR). Specifically, we first pro-
pose a novel orthogonal candidate label reconstruc-
tion method, which jointly optimizes with instance
features to extract more consistent instance corre-
lation. Then, we use instance correlation as recon-
struction coefficient to reconstruct pseudo-labels.
Subsequently, through local manifold learning, the
reconstructed pseudo-labels are leveraged to prop-
agate the consistency relationship between labels
and instances, thereby improving the accuracy of
pseudo-labels. Extensive experiments and analy-
ses demonstrate that the proposed PML-PLR out-
performs state-of-the-art methods.

1 Introduction
In the domain of machine learning, entities from the real
world are often encapsulated as data points, each comprised
of features and a corresponding label. In conventional clas-
sification tasks, labels are exclusive, allowing only a single
label to be assigned to each data point. However, numerous
real-world items possess multiple layers of meaning. Con-
sider a film that might encompass genres like science fiction,
war, and adventure, or a news piece that could be categorized
under politics, economics, and sports. Multi-label learning
(MLL) [Liu et al., 2021], which permits the assignment of
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multiple discrete labels to a single data point, has thus gained
significant attention in machine learning circles and is uti-
lized in a range of practical applications [Tahzeeb and Hasan,
2022], including: text classification, image recognition and
protein function prediction. However, the process of acquir-
ing datasets with accurate labels is not only costly but also
difficult. More often, we may end up with just a candidate
set of labels, some of which are relevant and others are just
noise. This noise will blur the classification decision bound-
ary, reducing the effectiveness of MLL.

To address this challenge, Xie and Huang [Xie and Huang,
2018] propose the concept of partial multi-label learning
(PML) as an innovative framework, whose objective is to
build a model capable of assigning labels to new instances
with noisy labels. The main challenge in PML is detect-
ing noisy labels and building accurate classification models,
which traditional multi-label learning (MLL) algorithms fail
to address. For example, ML-KNN [Zhang and Zhou, 2007]
and LIFT [Zhang and Wu, 2014] cannot effectively handle
noisy labels, leading to poor performance on noisy datasets.

In recent years, the development of PML methods can be
broadly categorized into two types: two-stage methods and
end-to-end methods [Chen et al., 2024]. In two-stage meth-
ods, noisy labels are first identified and then the classifier is
trained. Such as, DRAMA [Wang et al., 2019] constructs a la-
bel confidence matrix based on the feature manifold and can-
didate label set, utilizing it directly to train a multi-output re-
gression model. PARTICLE [Zhang and Fang, 2020] applies
label propagation to integrate information from K-nearest
neighbors, establishes a confidence threshold for labels, and
subsequently trains the MLC classifier. In contrast, end-to-
end methods optimize reliable labels and the classifier simul-
taneously. Examples include PML-DNDC [Hu et al., 2023]
employs dual noise elimination, simultaneously removing la-
bel and feature noise to enhance classifier training by explor-
ing label dependencies and promoting label similarity among
classifiers. PML-ND [Zhong et al., 2024] employs negative
label information to guide label propagation process to induce
ground-truth labels with high credibility.

These methods address PML problems, but several critical
limitations remain: 1) Existing approaches largely overlook
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the discriminative instance correlations embedded within
candidate labels, primarily because noise contamination pre-
vents direct extraction of meaningful correlations between in-
stances. 2) Current disambiguation methods produce pseudo-
labels that inadequately capture the intrinsic consistency rela-
tionship between feature representations and label semantics,
leading to suboptimal classification performance.

To address these limitations, this paper proposes a novel
PML method based on pseudo-label reconstruction (PML-
PLR). Specifically, we first introduce an innovative orthog-
onal candidate label reconstruction approach that leverages
subspace reconstruction techniques to effectively mitigate
both noise interference and complex label correlations within
candidate label sets. This reconstruction is then jointly opti-
mized with instance features to extract more robust and se-
mantically meaningful instance correlations that better reflect
true label relationships. Subsequently, these refined instance
correlations serve as reconstruction coefficients to generate
high-quality pseudo-labels that better approximate ground-
truth labels. Finally, through local manifold learning, the
reconstructed pseudo-labels propagate consistency relation-
ships between features and labels, ensuring the final pseudo-
labels align more closely with the underlying true label dis-
tribution. The main framework is illustrated in Figure 1.

2 Related Work
2.1 Multi-Label Learning
In multi-label learning (MLL), each example is associated
with multiple valid labels, and various approaches are ex-
tensively studied. Some methods transform MLL into bi-
nary classification problems, treating each label indepen-
dently [Zhang et al., 2024]. To enhance performance, many
studies explore label correlation, including pairwise and high-
order dependencies. Recently, integrating manifold learn-
ing with MLL has gained increasing attention. Hou et al.
[Hou et al., 2016] investigate the manifold structure in the
label space, assuming that correlated instances share labels.
Zhang et al. [Zhang et al., 2019] employ manifold learn-
ing and sparse feature selection to obtain a low-dimensional
embedding for label information. Zhao et al. [Zhao et
al., 2022b] combine manifold and subspace learning to mit-
igate noise and handle missing labels, reconstructing a more
robust feature and label space. However, MLL typically
assumes that each instance is precisely labeled, which is
often unrealistic [Wang et al., 2024; Wang et al., 2023;
Wang et al., 2021; Wen et al., 2023; Wen et al., 2022;
Wen et al., 2018]. In noisy MLL, binary labels may be flipped
to incorrect values. While these approaches reduce the bur-
den of multi-label annotation, they neglect the inherent chal-
lenge of labeling—specifically, that labels themselves can be
ambiguous.

2.2 Partial Multi-Label Learning
Compared to MLL, PML presents greater challenges, requir-
ing learning in imperfect environments and training high-
precision classifiers. Current PML research primarily cen-
ters on label disambiguation—identifying true labels within
candidate sets. Existing approaches typically employ explicit

learning strategies to remove noisy labels through various
techniques. Some methods leverage low-rank and sparse de-
composition to separate ground-truth labels from noise [Sun
et al., 2019; Sun et al., 2024], while others estimate candi-
date label credibility via label propagation or enhancement
techniques [Zhang and Fang, 2020; Xu et al., 2020; Xu et al.,
2023; Lin et al., 2025; Chen et al., 2024]. Many approaches
utilize feature information to identify noise [Yu et al., 2018;
Xie and Huang, 2021; Wang et al., 2019; Lyu et al., 2021],
with the most common practice being the application of cor-
relation or manifold constraints on labels [Li et al., 2021;
Lyu et al., 2020; Li et al., 2022; Hu et al., 2023]. Feature
selection has recently emerged as a popular disambiguation
strategy [Wang et al., 2022; Hao et al., 2023; Han et al.,
2025; Wu et al., 2025], while other researchers harness la-
bel correlations or cluster assignments [Zhao et al., 2022a;
Sun et al., 2021; Qian et al., 2024a; Wang et al., 2025;
Fang et al., 2025]. Various deep learning algorithms have
also been deployed to mine data distributions and mitigate
noise impact [Hang and Zhang, 2023; Xie and Huang, 2022;
Qian et al., 2024b].

3 Proposed Method
In this section, we introduce PML-PLR and its feasibility
optimization. Define some common variables as: X =
[x1,x2, · · · ,xn] ∈ Rd×n denotes feature matrix of n in-
stances with d-dimensional features. Y ∈ {0, 1}l×n repre-
sents a candidate label matrix with noisy information, where
l is the number of label classes. If Yij = 1 then the i-th label
is associated with the j-th instance. If Yij = 0, the opposite.
Each instance correspond to a set of candidate labels with un-
related labels incorrectly labeled as 1, which is called noisy
label. The goal of PML is to minimize the impact of noisy
information to make correct label predictions.

3.1 Learning Objective
Our ultimate goal is to induce a multi-label predictor f :
X 7→ [0, 1]l, which can assign an appropriate set of labels
to unseen instances. The main objectives of this paper are as
follows:

1) Learning more consistent instance-level correlation,
which allows the model to obtain more accurate correlation
between instances.

2) Learning label-instance relationships for pseudo-label
reconstruction, which makes the generated pseudo-labels
more consistent with instances and the real label distribution.

3.2 Instance-level Consistent Correlation Learning
The correlation between learning instances is typically mea-
sured using the feature similarity between each pair of in-
stances. Common methods include the Gaussian kernel func-
tion, cosine similarity, and Pearson correlation coefficient. In
order to learn instance-level correlation with higher consis-
tency between features and labels, we first use the distance
relationships of each instance’s features to preliminarily learn
the instance-level correlation. The formula is :

min
C

n∑
i=1

n∑
j=1

∥xi − xj∥22cij , s.t. C ≥ 0, 1C = 1, (1)

Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-25)

4897



Figure 1: The main framework of PML-PLR.

where, 1 is an n-dimensional all-1 row vector, C ∈ Rn×n

represents the captured instance correlation matrix, each el-
ement cij reflects the influence of j-th instance on i-th in-
stance. To enhance the consistency of instance-level correla-
tion, we choose to use label information to jointly learn cor-
relation. We believe that both features and labels are used to
describe instances, and label information contains more dis-
criminative instance correlation. We use label self-mapping
to capture the correlation between instances without losing
this discriminability. The formula is expressed as follows:

min
C

n∑
i,j=1

∥xi−xj∥22cij+∥Y−YC∥2F , s.t.C ≥ 0, 1C = 1.

(2)
However, since label Y contains noise, C learned by the sec-
ond item in the above method is not accurate enough. And
due to the correlation between labels, some labels are highly
related, leading to situations where two labels almost always
appear together. To reduce the influence of label correlation
and noise on instance-level correlation learning, for the sec-
ond item, we select a more representative latent label space to
learn more robust instance-level correlation. The formula is:

min
P,H,C

∥Y −P⊤H∥2F + ∥H−HC∥2F ,

s.t. PP⊤ = Im, C ≥ 0, 1C = 1,
(3)

where H ∈ Rm×n(m ≤ l) represents the potential label
space matrix, and P ∈ Rm×l is the indication matrix map-
ping the original label matrix to the latent label space. The
constraint PP⊤ = Im ensures no distortion during dimen-
sionality reduction, with the row vectors of P forming an or-
thogonal basis, meaning the column vectors of H are orthog-
onal components of Y in m-dimensional space. To mitigate
information loss and dimensional sensitivity, we introduce a
regularization term to preserve information flow. Specifically,
we add a reconstruction term to retain key information from
the original label matrix and a ℓ1-norm sparsity constraint to
prevent overfitting due to noisy labels. The updated formula
is as follows:

min
P,H,C

∥Y −P⊤HC∥2F + α∥Y −P⊤H∥1,

s.t. PP⊤ = Im, C ≥ 0, 1C = 1,
(4)

where α is a regularization parameter controlling the impor-
tance of preserving the original label structure. By updating
Eq.(2), the learning formula of the final instance-level corre-
lation is as follows:

min
P,H,C

n∑
i,j=1

∥xi − xj∥22cij + ∥Y −P⊤HC∥2F

+ α∥Y −P⊤H∥1,
s.t. PP⊤ = Im, C ≥ 0, 1C = 1.

(5)

3.3 Pseudo-label Reconstruction
In order to obtain better classification prediction results,
pseudo-label learning should maintain high consistency be-
tween instances and labels while minimizing noise. Further-
more, to maximize the effectiveness of previously obtained
instance-level correlation in subsequent pseudo-label recon-
struction, we need to reduce the influence of incorrect in-
stance correlations present in the original labels. We achieve
this by utilizing a rotation transformation to alter the instance
distribution, thereby weakening the instance correlations em-
bedded in the original labels. This rotation-based approach is
formulated as follows:

min
F,Q

∥YQ− F∥2F , s.t. Q⊤Q = In, 0l×n ≤ F ≤ Y, (6)

where F = [f1, f2, · · · , fn] ∈ Rl×n represents the pseudo-
label matrix and Q ∈ Rn×n represents the orthogonal pro-
jection transformation matrix. By constraining Q to be or-
thogonal, the resulting pseudo-label matrix F preserves the
essential structure while minimizing the misleading correla-
tions inherited from the original label matrix Y. The con-
straint of 0l×n ≤ F ≤ Y can ensure that the main structure
of the pseudo-label is consistent with the original label.

Next, we use the previously learned instance-level corre-
lation C as the reconstruction coefficient to reconstruct the
pseudo-labels, endowing them with the correct instance cor-
relations. This approach follows the principle that similar in-
stances should have similar labels. For the i-th instance fi,
the instance-level correlation with other instances is used as
label weight to reconstruct it. We can obtain reconstructed
pseudo-label f̃i:

f̃i =

∑n
j=1(fj ∗ cij)∑n

i=1 cij
=

n∑
j=1

(fj ∗ cij) = Fci. (7)

To enhance the consistency between pseudo-labels and in-
stances, we employ nearest neighbor relationships to con-
strain distances between pseudo-labels and their recon-
structed counterparts. This approach ensures labels conform
to the data’s local manifold structure while propagating label-
instance relationships. The neighbor correlation is computed:

Kij =

{
exp(

−∥xi−xj∥2
2

2σ2 ), xj ∈ N (xj) or xj ∈ N (xi),

0, otherwise,

(8)
where N (xi) denotes the set of k nearest neighbors of sample
xi, and σ = 1

n

∑n
i=1 ∥xi−x

(k)
i ∥2 is the bandwidth parameter
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of the Gaussian kernel, which controls how the distance be-
tween samples affects their similarity. The main goal of this
section is to first weaken the instance-level correlation in the
original labels using orthogonal mapping, then use the pre-
viously learned, more consistent instance-level correlation to
reconstruct the pseudo-labels, and apply local manifold con-
straints to restore the instance-level correlation of the pseudo-
labels. The relationship between the label and the instance is
propagated by reconstructing the pseudo-label. The overall
formula for this section is expressed as follows:

min
F,Q

∥YQ− F∥2F + β
n∑

i=1

n∑
j=1

∥fi − Fcj∥22Kij ,

s.t. Q⊤Q = In, 0l×n ≤ F ≤ Y.

(9)

3.4 Kernel Nonlinear Classifier
For the classifier part, we represent ϕ(•) : Rd → Rh as a fea-
ture mapping from the feature space to some h-dimensional
high-dimensional Hilbert space, and then we can train the
ridge regression model. Further using the deviation term b ∈
Rc in the prediction function, the prediction function with
kernel extension can be expressed as g(xi) = W⊤ϕ(xi)+b.
Supervised training using the pseudo-label F, then the classi-
fication model can be expressed as:

min
W

∑
i

∥ϵi∥22 + λ∥W∥2F, s.t. f i = W⊤ϕ(xi) + b− ϵi

(10)
By defining a matrix E = [ϵ1, ϵ2, . . . , ϵ3]

⊤∈ Rl×n the above
problem can be re-written in the following matrix form:

min
W

tr(E⊤E) + λ tr(W⊤W), s.t. F = W⊤Φ+ b1−E,

(11)
where Φ = [ϕ(x1), ϕ(x2), . . . , ϕ(xn)]∈ Rh×n. To facilitate
optimization, we restate Eq.(11) as:

min
W,b

∥W⊤Φ+ b1− F∥2F + λ{∥W∥2F + ∥b∥2F}. (12)

3.5 Overall Objective Function
By combining the Eq.(5) (consistent correlation learning),
Eq.(9) (pseudo-label learning and reconstruction) and Eq.(12)
(classifier), the final objective function of the model is ob-
tained as follows:

min
W,b,P,H,C,Q,F

∥W⊤Φ+ b1− F∥2F + ∥YQ− F∥2F+
n∑

i,j=1

∥xi − xj∥22cij + ∥Y −P⊤HC∥2F + α∥Y −P⊤H∥1

+ β
n∑

i,j=1

∥fi − Fcj∥22Kij + λ{∥W∥2F + ∥b∥2F },

s.t. Q⊤Q = In, C ≥ 0, 1C = 1,

PP⊤ = Im, 0l×n ≤ F ≤ Y.
(13)

3.6 Optimization
For the above optimization problem, ADMM [Feng et al.,
2020] is adopted to solve it. In other words, we use alternate
optimization to solve Eq.(13), details are as follows:

Update P and H
Removing the items that are irrelevant to P and H, and fix C.
Then, the sub-optimization as:

min
P,H,E

∥Y −P⊤HC∥2F + α∥E∥1,

s.t. PP⊤ = Im, Y −P⊤H = E.
(14)

Then we apply the augmented Lagrange multiplier method to
get the following Lagrange function:

min
P,H,E

∥Y −P⊤HC∥2F + α∥E∥1 +
µ

2
∥Y −P⊤H−E∥2F ,

s.t. PP⊤ = Im.
(15)

where µ is a very large number. With P and E fixed, since
PP⊤ = Im, H can be solved in a closed form :

H(t+1) = (2PYC⊤ − uP(Y −E))(2CC⊤ − µIn)
−1.

(16)
With H and E fixed, for P, the sub-optimization can be con-
verted to:

max
P

Tr((2YC⊤H⊤+µ(Y −E)H⊤)P), s.t.PP⊤ = Im,

(17)
where Tr(·) is the trace norm. It is noted that the problem
in Eq.(17) corresponds to the classic orthogonal procrustes
problem [Cai et al., 2010], which can be approximated by
singular value decomposition (SVD). Let R = 2YC⊤H⊤ +
u(Y −E)H⊤, then we utilize SVD to decompose R, i.e.,
R = UΣV⊤, optimization of P can be obtained by:

P(t+1) = VU⊤. (18)

With H and P fixed, the variables E can be optimized by
solving following problem:

min
E

L(E) = α∥E∥1 +
µ

2
∥Y −P⊤H−E∥2F , (19)

which is a typical LASSO regression problem [Mirone and
Paleo, 2017], and we apply PGD algorithm to optimize it.
The proximal operator of Eq.(19) is:

proxth(·) (E) = argmin
E

∥E− Z∥2F +
α

µL
∥E∥1 , (20)

where Z = Et − 1
L∇L(E(t)), E(t) represents the solution

from the t-th iteration, and ∇L(E) is the gradient of the ob-
jective function L(E), L is the Lipschitz constant of ∇L(E)
and t denotes the number of iteration. Problem of Eq.(20) can
be iteratively updated by the soft-thresholding operator:

E
(t+1)
ij = Soft[E

(t)
ij − 1

L
∇L(Et

ij ,
α

µL
], (21)

where Soft[b, ν] = sign(b)max{|b| − ν, 0}. In addition, the
Lipschitz constant of ∇L(E) is 1, so we set L = 1.

Update C
Removing the items that are irrelevant to C, the suboptimiza-
tion for C is simplified as:

min
C

Tr(GC⊤) + ∥Y −P⊤HC∥2F + 2βTr(FLkC
⊤F⊤),

(22)
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where Lk is the Laplacian matrix of K, G ∈ Rn×n represents
the distance matrix, for each element Gij = ∥xi − xj∥22.
Taking the derivative of Eq.(22) and setting the derivative to
zero, we obtain the following equation:
G+ 2H⊤PP⊤HC− 2H⊤PY − 2βF⊤FLk = 0. (23)

Then, we can obtain the optimization result variable for the
first step of optimizing C :
O = (2H⊤PP⊤H)−1(2H⊤PY+2βF⊤FLk −G). (24)

Then the optimization of C can be transformed into:

min
ci

1

2
∥ci − oi∥22, s.t ci ≥ 0, 1ci = 1. (25)

Eq (25) can be solved using the technique reported in [Huang
et al., 2015] or be solved via off-the-shelf QP tools.

Update Q
For Q optimization, which also is a classical orthogonal prob-
lem, Q can be solved as: first compute the singular-value de-
composition (SVD) of matrix Y⊤F as Y⊤F = MΣN⊤ and
then let Q = MN⊤.

Update W and b
We add a bias term b to the classifier, so that classifier W
becomes: Wm = [W;b] : the feature matrix Φ becomes:
Φm = [Φ;1h]. The optimization can be reformulated as:

minWm∥W⊤
mΦm − F∥2F + λ∥Wm∥2F . (26)

After taking the derivation and making the derivation result
zero, the updated formula of Wm is simplified as follows:

Wm = (ΦmΦ⊤
m + λIh+1)

−1(XF⊤). (27)
Update F
Removing the items that are irrelevant to F, and fix W,b,Q
and C. Then, the suboptimization for F is simplified as:
min
F

∥W⊤
mΦ− F∥2F + ∥YQ− F∥2F + βTr(FLkC

⊤F⊤)

s.t. 0l×n ≤ F ≤ Y,
(28)

For the 0l×n ≤ F ≤ Y constraint, it can be decomposed into
two non-negative constraints, F ≥ 0 and Y − F ≥ 0. Next,
the Lagrange multiplier method is applied to solve it:
min
F

∥W⊤
mΦ− F∥2F + ∥YQ− F∥2F + 2βTr(FLkZ

⊤F⊤)

− Tr(ΩF⊤)− Tr(Θ(Y − F)
⊤
),

(29)
where Ω and Θ represent the Lagrange multiplier. Taking
the derivative of Eq.(29) and setting the derivative to zero, we
obtain the following equation:
4F− 2W⊤

mΦ− 2YQ+2βF(C⊤Lk +L⊤
k C)−Ω+Θ = 0

(30)
Based on condition of Karush-Kuhn-Tucker (KKT), it can be
given that: ΩijFij = 0 and Θij(Y − F)ij = 0 the update
rules for F can be obtained as:

F
(t+1)
ij = F

(t)
ij

Bij

Aij + eps
− ΘijYij

Aij + eps
, (31)

where A = 2F+βFC⊤Lk +βFL⊤
k C, B = W⊤

mΦ+YQ,
eps is a tiny value to prevent the denominator from being 0.
The update for Θ is based on the complementary condition:
Θij = max(0,Fij −Yij).

Datsets #Instances #Features #Class avg.#CLs avg.#GLs
Music emotion 6833 98 11 5.29 2.42

Music style 6839 98 10 6.04 1.44
Mirflickr 10433 100 7 3.35 1.77
YeastBP 6139 6139 127 5.93 5.54
Emotions 593 72 6 3, (4), 5 1.86

Birds 645 260 19 3, (4), 5 1.01
Medical 978 1449 45 3, (5), 7 1.25
Image 2000 294 5 2, (3), 4 1.23
Scene 2407 294 6 3, (5), 7 1.07
Yeast 2417 103 14 (9), 11 4.24
Health 5000 612 32 (7), 9 1.67

Reference 5000 793 33 (7), 9 1.17

Table 1: General information of the eight multi-label datasets and
four partial multi-label learning datasets, the experimental settings
in parentheses are mainly presented.

4 Experiments
4.1 Datasets
To evaluate the generalization performance of our proposed
PML-PLR method, a total of 25 datasets are used for compar-
ative study. Specifically, the experiments are conducted on 4
real-world PML datasets and 21 synthetic PML datasets gen-
erated from 8 multi-label datasets. Detailed characteristics of
all datasets are summarized in Table 1. For the 3 real-world
PML datasets, including Music emotion , Music style,
Mirflickr and YeastBP 1 . For the 8 multi-label data sets,
including Emotions, Birds, Medical, Image, Scene,
Yeast2 , Health and Reference [Zhong et al., 2024], We
synthesize PML datasets by randomly adding unrelated labels
together with their underlying truth labels to form a candidate
tag set. The noise is added by randomly introducing false
positive labels. For example, in the emotions dataset, the av-
erage number of ground-truth labels are 1.86 (avg.#GLs),
and after adding noise, the average number of positive labels
become 4 (avg.#CLs), resulting in an average of 2.14 noise
labels per instance. It is worth noting that due to the page
limit, most of the following experimental synthetic datasets
are based on the experimental Settings in parentheses, that is,
8 synthetic datasets.

4.2 Baselines and Implementation Details
We select seven benchmark methods for comparison, includ-
ing two MLL methods ML-KNN [Zhang and Zhou, 2007]
and LIFT [Zhang and Wu, 2014], five state-of-the-art PML
methods PML-LENFN [Chen et al., 2024], PAMB [Liu
et al., 2023], PML-NI [Xie and Huang, 2021], PARTIAL
[Zhang and Fang, 2020] and FPML [Yu et al., 2018]. We
set the corresponding parameters according to the recom-
mendations in the respective literature. The parameters α,
β and λ in the PML-PLR are selected using grid search
from {10−4, 10−3, 10−2, 10−1, 100}. Cross-validation is em-
ployed to select the optimal latent space dimension m. Five
widely-used multi-label metrics are employed to evaluate
each comparing method, including Hamming Loss, Ranking
Loss, One-Error, Coverage and Average Precision. Detailed
definitions on them can be found in [Zhang and Zhou, 2013].

1http://palm.seu.edu.cn/zhangml/
2http://mulan.sourceforge.net/datasets.html
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Datasets PML-PLR PML-LENFN PAMB PML-NI PARTICLE FPML ML-KNN LIFT

Ranking Loss (the smaller the better)

Music emotion 0.232±0.007 0.246±0.009 0.234±0.007 0.246±0.008 0.362±0.014 0.410±0.009 0.322±0.012 0.253±0.009
Music style 0.132±0.012 0.138±0.010 0.135±0.005 0.137±0.010 0.221±0.010 0.317±0.033 0.204±0.011 0.177±0.009

Mirflickr 0.109±0.009 0.118±0.005 0.112±0.038 0.126±0.007 0.127±0.103 0.115±0.006 0.163±0.031 0.117±0.007
YeastBP 0.197±0.013 0.256±0.011 0.230±0.011 0.220±0.011 0.404±0.033 0.415±0.057 0.358±0.012 0.245±0.009

Hamming Loss (the smaller the better)

Music emotion 0.208±0.004 0.213±0.004 0.210±0.003 0.254±0.009 0.221±0.004 0.272±0.027 0.216±0.002 0.335±0.005
Music style 0.114±0.006 0.116±0.005 0.115±0.004 0.159±0.012 0.125±0.004 0.312±0.048 0.123±0.005 0.819±0.006

Mirflickr 0.169±0.004 0.173±0.004 0.171±0.032 0.224±0.006 0.174±0.037 0.176±0.003 0.175±0.004 0.218±0.005
YeastBP 0.033±0.002 0.041±0.002 0.034±0.007 0.037±0.002 0.026±0.012 0.252±0.008 0.025±0.002 0.024±0.002

Average Precision (the larger the better)

Music emotion 0.632±0.011 0.610±0.012 0.626±0.011 0.608±0.012 0.506±0.016 0.458±0.010 0.536±0.011 0.596±0.010
Music style 0.745±0.014 0.731±0.016 0.741±0.007 0.739±0.015 0.657±0.012 0.566±0.090 0.674±0.015 0.681±0.015

Mirflickr 0.825±0.013 0.798±0.007 0.791±0.019 0.786±0.009 0.813±0.136 0.814±0.009 0.733±0.069 0.789±0.012
YeastBP 0.416±0.021 0.339±0.015 0.356±0.022 0.404±0.022 0.108±0.016 0.328±0.012 0.191±0.013 0.305±0.013

Table 2: Results of PML-PLR compared with other methods under real–word datasets, bold the best, underline the suboptimal.
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Figure 2: Results of PML-PLR against other approaches with the Nemenyi test(CD = 2.0998 at 0.05 significance level).

Evaluation metric FF Critical value

Hamming Los 21.3683
Ranking Loss 25.7514

One Error 12.4203 2.0998
Coverage 15.0732

Average Precision 15.1171

Table 3: Friedman statistics FF across five evaluation metrics and
the critical value at 0.05 significance level.

4.3 Experimental Results
Due to page limitations, Tables 2 and 4 only present the re-
sults under the experimental settings in parentheses in Table
1. Table 2 reports the results of the experiment on real-world
datasets. Table 4 shows the results on synthetic datasets. Af-
ter analyzing the experimental results, we can draw the fol-
lowing conclusions:

• It turns out from Table 2 and Table 4 that we conduct
36 cases (12 datasets × 3 metrics = 36 cases) of experi-
ments and PML-PLR performs best 31 cases (real world
dataset 11 cases, synthetic dataset 20 cases), accounting
for 86.11%. This proves that PML-PLR performs best
on both real-world and synthetic datasets.

• MLL algorithms excel in classification on low-noise
datasets, while PML algorithms perform better on high-
noise datasets due to their denoising focus. PML-PLR
outperforms both MLL and PML algorithms in all set-
tings, highlighting the effectiveness of its pseudo-label
reconstruction and the model’s robust classification.

Under a total of 25 experimental settings, the Friedman test
[Demšar, 2006] is used to assess the relative performance of
the methods, with Table 3 showing the Friedman statistic FF

and the critical value. The post-hoc Nemenyi test evaluates
statistical significance of performance differences. Figure 2
presents critical difference (CD) diagrams for each metric,
where PML-PLR (highlighted with a red line) serves as the
control method. Methods whose performance differences do
not exceed the CD value are connected by blue lines, indi-
cating no significant statistical difference. The results clearly
highlight PML-PLR’s significant superiority, as it achieves
the lowest average rank across all metrics, with few or no
other methods connected to it via the CD threshold.

4.4 Further Analysis
Convergence analysis: Figure 3 (a) shows the convergence
curve of the model in multiple data sets. The result shows
that with the increase of the number of iterations, the loss
value decreases rapidly and finally stabilizes at a low value,
indicating that the model converges to a satisfactory solution.
Parameter sensitivity analysis: Figure 3 (b), (c) and (d)
show the sensitivity experimental results of the three param-
eters α, β, λ in the model. The results show that each pa-
rameter has an optimal value and PML-PLR performs stably
across a wide range of parameters, making it capable of ro-
bust classification performance under various conditions.
Ablation analysis: Figure 4 shows the ablation results on
two datasets, comparing PML-PLR with its three degraded
versions: no pseudo-label learning (PL-free, which directly
uses candidate labels for classifier training ), no reconstruc-
tion (R-free, which sets parameter β=0), and no consistent
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Datasets PML-PLR PML-LENFN PAMB PML-NI PARTICLE FPML ML-KNN LIFT

Ranking Loss (the smaller the better)

Emotions 0.166±0.027 0.210±0.027 0.192±0.032 0.263±0.029 0.446±0.027 0.407±0.014 0.249±0.044 0.211±0.035
Birds 0.197±0.032 0.200±0.028 0.204±0.024 0.205±0.034 0.326±0.027 0.341±0.020 0.250±0.041 0.214±0.030

Medical 0.032±0.012 0.068±0.021 0.113±0.032 0.100±0.028 0.102±0.018 0.059±0.010 0.093±0.021 0.046±0.010
Image 0.180±0.018 0.212±0.026 0.217±0.015 0.230±0.024 0.261±0.070 0.254±0.018 0.272±0.023 0.235±0.015
Scene 0.134±0.011 0.242±0.018 0.250±0.016 0.284±0.013 0.291±0.130 0.153±0.013 0.348±0.024 0.278±0.018
Yeast 0.178±0.012 0.190±0.016 0.211±0.007 0.202±0.016 0.189±0.009 0.191±0.017 0.193±0.015 0.188±0.011
Health 0.067±0.003 0.076±0.006 0.081±0.007 0.096±0.007 0.110±0.008 0.063±0.003 0.077±0.004 0.070±0.006

Reference 0.103±0.004 0.130±0.009 0.110±0.008 0.152±0.009 0.156±0.015 0.101±0.005 0.116±0.009 0.118±0.007

Hamming Loss (the smaller the better)

Emotions 0.214±0.013 0.247±0.022 0.221±0.022 0.500±0.047 0.253±0.022 0.330±0.013 0.261±0.022 0.570±0.035
Birds 0.046±0.004 0.093±0.007 0.101±0.009 0.061±0.011 0.149±0.010 0.109±0.023 0.049±0.006 0.051±0.007

Medical 0.013±0.001 0.013±0.003 0.025±0.001 0.023±0.002 0.037±0.003 0.015±0.001 0.085±0.001 0.012±0.002
Image 0.203±0.009 0.215±0.027 0.217±0.010 0.227±0.015 0.236±0.056 0.249±0.016 0.222±0.015 0.572±0.013
Scene 0.149±0.010 0.211±0.017 0.203±0.022 0.644±0.053 0.277±0.002 0.158±0.012 0.759±0.026 0.820±0.003
Yeast 0.213±0.004 0.234±0.012 0.215±0.008 0.248±0.036 0.217±0.008 0.232±0.006 0.315±0.013 0.587±0.008
Health 0.035±0.001 0.038±0.002 0.044±0.001 0.036±0.002 0.051±0.003 0.045±0.001 0.049±0.001 0.047±0.003

Reference 0.029±0.001 0.036±0.002 0.036±0.001 0.030±0.001 0.035±0.001 0.027±0.001 0.033±0.001 0.037±0.001

Average Precision (the larger the better)

Emotions 0.792±0.003 0.768±0.028 0.783±0.036 0.749±0.034 0.739±0.033 0.730±0.016 0.720±0.039 0.746±0.033
Birds 0.594±0.032 0.581±0.048 0.564±0.044 0.572±0.041 0.419±0.046 0.373±0.020 0.525±0.062 0.550±0.062

Medical 0.872±0.027 0.803±0.031 0.725±0.020 0.732±0.035 0.835±0.024 0.822±0.022 0.726±0.037 0.845±0.018
Image 0.764±0.009 0.747±0.029 0.748±0.019 0.732±0.024 0.725±0.084 0.696±0.023 0.689±0.022 0.720±0.019
Scene 0.800±0.000 0.649±0.025 0.722±0.023 0.609±0.018 0.649±0.149 0.753±0.020 0.527±0.024 0.613±0.027
Yeast 0.752±0.020 0.740±0.017 0.753±0.013 0.725±0.016 0.744±0.011 0.730±0.013 0.729±0.017 0.734±0.014
Health 0.760±0.008 0.750±0.016 0.680±0.016 0.723±0.018 0.501±0.045 0.695±0.010 0.650±0.012 0.716±0.019

Reference 0.671±0.012 0.643±0.012 0.612±0.015 0.614±0.011 0.448±0.058 0.576±0.014 0.589±0.007 0.619±0.014

Table 4: Results of PML-PLR compared with other methods under synthetic datasets, bold the best, underline the suboptimal.
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Figure 3: Convergence curve on synthetic datasets and results of PML-PLR with varying values of trade-off parameters on Birds.
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Figure 4: Ablation results of PML-PLR on Birds and Yeast dataset.

correlation (C-free, which extracts correlation only from fea-
ture matrix X). The results clearly demonstrate that PML-
PLR significantly outperforms all degraded algorithms across

multiple evaluation metrics, validating the effectiveness and
necessity of each component in our proposed framework.
The performance drop when removing any single component
highlights their complementary nature in addressing the chal-
lenges of partial multi-label learning.

5 Conclusion
This paper presents a novel PML method, PML-PLR, which
jointly extracts instance-level correlation from candidate la-
bels and features, and then uses the instance correlation
as reconstruction coefficient to reconstruct pseudo-labels.
Through local manifold learning, the reconstructed pseudo-
labels are used to propagate the consistency relationship be-
tween labels and instances, thereby improving the accuracy
of pseudo-labels. Extensive experiments demonstrate the su-
periority of the model.
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